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IN 

A non-linear dynamical system whose motion is described by second-order Lagrangian equations is 

considered. The following problem is investigated. It is required to construct a control in the form of a 

synthesis, i.e. in the form of a function of the current values of the phase coordinates and time, that 

takes the system in a given time from an arbitrary initial phase state to a given final phase state. A 

method for solving this problem is presented based on the use of fit integrals of the equations of free 

motion of the system and local connection of the values of the required control forces in a small 

neighbourhood of the final moment of the control process. Here the control processes are synthesized 

analytically and are optimal in the sense of minimizing a functional of mixed type [l] over almost the 

entire time interval of the control process. The efficiency of the proposed method of control synthesis is 

illustrated by examples. 

THE RESULTS obtained are a further development of investigations [2-51 concerned with the use 
of first integrals in optimal control problems and extend them to the case of control synthesis 
in variational problems where the ends of the phase trajectories are fixed. 

1. Consider a multidimensional non-linear dynamical system whose motion is described by 
Lagrange equations of the second kind 

d aK aK -- 
dt aq; -q 

=Ui+Qi(q,q’,t) i=l,..., TI (1.1) 

Here q=(ql, . . . q,) are generalized coordinates for the system, n is the number of its 
degrees of freedom, and the dot denotes differentiation with respect to time. 

The generalized forces consist of control forces y that are to be determined together with 
the terms Qj(q, q’, t) which consist of all the remaining outer and inner forces. 

The kinetic energy of the system is given by the quadratic form 

K(q,q’)= i F, Aii(q)qJqj’ 
1, I 

U-2) 

where the 4 are elements of a symmetric positive-definite (n xn)- matrix A(q) and the 
summation is carried out over values of i and i from 1 to n. 

Using (1.1) and (1.2) we can reduce the equations of motion to the form 
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A(q)q”+B(q,q-, Q=u 

where u=(y,..., u,,) is the vector of control forces and B = (B,, . . . 
valued function. 

Introducing the auxiliary 2n-dimensional vector x = (ql, . . . , qm, q;, 
of motion (1.3) can be written in the form 

x’ = f(x, t) + C(x) u 

(1.3) 

B,) is a known vector- 

. .* , q:), the equations 

Here f(x, t) and C(x) are known matrices of dimensions (2n xl) and (2nxn), respectively. 
Suppose that the initial time (r = 0) and final time (t = 7’) of the control process are specified, 

together with the boundary conditions 

x(0) = x0 (1.3 
x(T) = XT (1.6) 

We formulate the following control problem. 

Problem C. Find a control in the form of a synthesis u = u(x, t) taking system (1.4) from an 
arbitrary initial phase state (1.5) to a given state (1.6) in a specified time 2’ c =. 

2. The idea behind the method presented below for solving problem C consists of the 
following. We shall assume that over almost the entire time interval of the control process, i.e. 
for t E [0, T -Ze], where e is a small positive number, the system moves under the action of 
control forces u”(x, t) which extremize some functional 4x, u] for given differential constraints 
(1.4) and initial state (1.5). In a small neighbourhood of the end of the control process, i.e. for 
t E [I* - 2e, T], the system is acted on in a suitable manner by connecting piecewise-constant 
control forces which ensure that the system arrives at the specified final state (1.6). 

In accordance with the above we shall look for a solution of problem C in the form 

I 

u” (x, t), 0 G t Q T - 2e 

u(x, f) = u-, T--2e<t<T-e (2.1) 
u+, T-e<t<T 

where x0(x, t) is an II -dimensional vector of control forces that is the solution of some 
variational problem with a free right-hand end of the phase trajectory for dynamical system 
(1.4), and II-=& , . . . , u;), u* =(uf , . . . , ul) are n-dimensional constant vectors whose 
components are to be determined. 

We will describe one of the possible procedures for choosing the control forces u”(x, t). 
Suppose y(x, 0, . . . , u,(x, t) (me 2n) are first integrals of the equations of free motion of 

the dynamical system under consideration 

x’ = f(x, t) (2.2) 

We choose an arbitrary differentiable function W(y,, . . . , y,,,) and consider a functional of the 
form 

J[x, u, W] = w iV[X(Tl), T11 I + - ‘, is 7 Ikj<VxW[V(X,t)], q(X)> 12dr + 
Uj(X3 f) 

t; ;I: [--- 
ki 

12& W[v(x,t)] = W[Ul(X,O,. . . , hn(x,Ql (2.3) 

Here &) are given constants, C,(x) is the jth column-vector of the matrix C(x), T, is the specified time 
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of the control process, A, is the gradient operator with respect to the variable x, and (,) represents the 

scalar product of vectors. 
The first term of functional (2.3) (the terminal part) is a function of the phase coordinates at time 

t =T,, the second describes properties of both the dynamical system (2.2) itself and its controlling 
apparatus. The third term of functional (2.3) can be interpreted as the cost of controlling the motion of 
the dynamical system [6, 71. A more complete physical interpretation of the fist two terms of the quality 
criterion (2.3) can be obtained for a specific choice of the function W and first integrals u,(x, t). For 
example, in the case when system (2.2) is conservative and the function w[v(x, t)] is the energy integral, 
the first term of function (2.3) defies the total mechanical energy of the system at time t = T,, and the 
second describes the rate of dissipation of mechanical energy under the controlled motion of the system 
in question. 

We will formulate an auxiliary control problem. 

Problem A. Find a control in the form of a synthesis u” = u”(x, t) which minimizes functional 
(2.3) given the differential constraints (1.4) and initial state (1.5). 

We know [2,5] that the solution of problem A has the form 

uiO(x,t)=-k~(VxW[v(x,t)], Cj(x)), j=l,..., n (2.4) 

Here the optimal motion of the system is given by the solution of the Cauchy problem (1.4), 
(1.5), (2.4), and we have the relation 

minJ[x,u,W] =J[x,uO, W] = W[v(x,,O)] (2.5) 
U 

We put q = T - 2e in formula (2.3) and denote by x(T - 2e) the value at time t = T - 2e of the 
solution of the Cauchy problem (1.4), (1.5), (2.4). Suppose q,(T- 2e) and q;(T- 2e) are the 
corresponding values of the generalized forces and their velocities, corresponding to values of 
the components x,(T - 2e) and xi+,,@ - 2e). 

We shall determine piecewise-constant controls ui to take the dynamical system (1.3) over 
the time 2e from the state qi(T - 2e), q,t(T - 2e) to the state ql(T), q;(T) (i = 1, . . . , n) specified 
by boundary condition (1.6). 

Using Taylor’s formula for the functions q,(t) and q;(T) we can write, up to terms of second 
order of smallness in e 

qi(T - e) =qf(T - 2e) t eq;(T - 2e) t 41 e2qi’(T - 2e) P-6) 
Qi(T--e)=q;(T-2e)teqi*(T-2e), i= 1,. . . ,n 

(where we mean by q,Y(T - 2e), in general, the appropriate one-sided second derivative). 
On the other hand, given the same assumptions we also have the relations 

qi(T - e) = qj(7) - eq; (79 + ?4 e24i’(T) 
qi(T--e)=qi(Y+-eq;‘(T), i=l,...,n 

(2.7) 

We require continuity of the phase trajectory of the system at time t = T-e. This require- 
ment reduces to the need to match the values of the controls in a neighbourhood of t = T-e 
and enables one to determine the components zd;, u,! (i = 1, . . . , n). Equating the right-hand 
sides of (2.6) and (2.7) we have conditions of cont&ity for the phase trajectory, from which we 
determine the acceleration components 

qi’(T - 2e) = ew2 [qj(T) - qf(T - 2e) - ?4 eqi (T) - 3/2 eqi (T -- 2e)] (2.8) 
41’(T) = ew2 [4i(T - 2e) - qi(T) + ?4 eqi (T - 2e) + 3/2 eqi (T)] , i = 1, . . . , n 

Note that the values of q:(T - 2e) calculated from formulae (2.8) are not, in general, equal to 
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the corresponding accelerations of the system at time t = T - 2e found by solving the Cauchy 
problem (1.4), (l.S), (2.4). 

Having calculated qr(T - ‘2e) and q,?(T) from formulae (2.8), using the equations of motion 
(1.3) we obtain the final formulae for the required matching of the piecewise-continuous 
controls 

u; = G Ajj [q(T - 2e)]4;’ (T - 2e) +Bi [q(T - 2e), q’(T - 2e), T - 2e] (2.9) 
j= 1 

@i +=,~l~i~[q(T)l*~‘(T)cB,[q(~,q’fT),Tl, i =l~--.,~ 

On the basis of the above we obtain the following algorithm for solving problem C. 
1. One or other method is used to determine first integrals u,(x, t), . . . , u,,,(x, t) of the 

equations of free motion (2.2). 
2. A continuous differentiable function W(y,, . . . , y,,,) is chosen and the control u’(x, t) is 

calculated from formulae (2.4). 
3. The Cauchy problem (1.4), (1.5), (2.4) is solved and the motion of the system in the time 

interval t E [O, T - Ze] is calculated, where 0 c e <c T. 
4. The acceleration q&?(T - Ze) and rr,“(T) (i = 1, . . . , n) are calculated using formulae (2.8) 

and, with the help of relations (Z&9), the piecewi~-co~tant controls n- and u+ which ensure 
that the system arrives at the given final phase state (1.6) are calculated. 

5. The motion of the system for t E [T - 2e, T] is computed from the formulae 

qi(t) = qi(~ - 2e) t (t - T t 2e) 41 (T - 2e) t % (t -- T + 2e)2qi”(T - 2e) (2.10) 

for T-2ectsT-e (i=l, . . ..n)andfrom 

qi(t) = qJz+) t (r --- T + e) 4; (Tj + ?4 (t -.- T + e)2qi’(T) (2.11) 

for T-e<tsT (i=l,...,n). 
6. The required control in the form of a synthesis solving problem C is deter~ned from 

formulae (2.1), (2.4), (2.8) and (2.9). 
The algorithm proposed provides the possibility of constructing a family of solutions of 

problem C depending both on the choice of first integrals u, and on the choice of the function 
W(y,, s**, y,,,). This arbitrariness can be used, for example, with the aim of further optimizing 
the solution of problem C with respect to some quality criterion. In particular, from the choice 
of the function W(y,, . . . , y,,,) it is clear that one can ensure that constraints on the required 
control are satisfied. 

Analysis of formulae (2.8) and (2.9) shows that the controls U; and u,? are of order e” and 
so their contributions to functional (2.3) could be substantial. In this connection, it is desirable 
to choose the function W(y,, . . . , y,) so that x(T- Ze) belongs to a sufficiently small neigh- 
bourhood of the specified end state (1.6). 

We remark that the case when e = 0 and (2.4) is used to calculate the control over the entire 
time interval t E[O, T] is also of interest. Then, naturally, there is no guarantee that with an 
arbitrarily chosen function W(yl, . . . , y,,,) the final condition (1.6) will be satisfied. However, 
one may hope that with a suitable choice of W(y,, . . . , y,,,) a control of form (2.4) could take 
the system under investigation to the given final state. 

3. As an illustration of the efficiency of the algorithm proposed in Sec. 2 we consider a number of 
examples. 

Example 1. Suppose that a point particle of mass m moves along a horizontal axis under the action of a 
force with potential P(q) and a control u(q, @, t). 

The equation of motion has the form 
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It is required to construct a control in the form of a synthesis u(q, q’, t) taking the particle in a time 
T < 0 from a given initial state 

4@)=q,, q’(o)‘q; (3.2) 

to the final state 

To solve thii problem we apply the algorithm described in Sec. 2. 

We introduce new variables x, = q and x, = q’. In x,, x, variables Eq. (3.1) and boundary conditions 

(3.2), (3.3) take the form 

x; =x2, x; = - (dP(x, )/dx, + u (x, 0)/m (3.4) 

xi(0)=xio, i= 1,2 (3.5) 

x[(T)=xjT. i=1,2 (3.6) 

We shall look for a control u(x, t) of the form (2.1). With 

energy integral 

u = 0 Eqs (3.4) have a first integral-the 

u(x) = %m.x: + P(x, ) (3.7) 

We put T, = T-2-e, 0 < e <c T, and w[u(x)] = u(x), where u( ) ’ x 1s g iven by (3.7). Then the function (2.3) 

becomes 

1 T-2e 
J[x, f4, IV] = f rnx: (T - 2e) + P[x, (T - 2e)] + - 

1 T-2e 

2 L 
x;(f)&+ - 

2 I! 
u’(x, t) dt (3.8) 

The end-point components of functional (3.8) give the value of the total mechanical energy of the 

system at time I = T - 2e, the third term in (3.8) describes the dissipation of mechanical energy under the 
controlled motion, and the fourth is the cost of the control. 

We choose u’(x, t) in formula (2.1) so that the functional (3.8) is minimized given differential 

constraints (3.4) and initial state (3.5). This control is given by formula (2.4) and using (3.4) and (3.7) it 

can be written in the form 

zP(x, t) = -x2 V) (3.9) 

Suppose q(T-2.e) and q’(T-2e) are the values of the generalized coordinate and its velocity 

corresponding to the value x(T-2e) of the solution of the Cauchy problem (3.4), (3.5) with u(x, t) = u(x, 

t). Using formulae (2.6)-(2.8) for i = 1, we determine the acceleration components q”(T -2e) and q”(T). 
With the help of formulae (2.9) for i = 1 and Eq. (3.1) for the matching values of the control u-, u+, we 
obtain the relations 

u- = mq”(T - 2e) + dP[q (T - 2e)] /dq, u+ = mq”(T) + dP[q (T)] /dq (3.10) 

The motion of the system under the controls (2.1), (3.9) and (3.10) obtained for t E (T -2e, T] is given 

by formulae (2.10) and (2.11) with i = 1. 

Example 2. It is required to determine the control u = u(x) taking a dynamical system of form 

x; =x2, x; =u (3.11) 
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from a given initial phase state (3.5) to a given final state (3.6) in a given time T < L*). 
A solution of this problem can be obtained using the algorithm described in Sec. 2 for the case e = 0. 
For u = 0 Eq. (3.1) has a first integral U(X) = x,. Consider a functional of the form 

1 T LIZ awtx,) 
f[u, WI = Wlx,fnl + - f (;I +k’i 7 .j dt 

2 0 ax, f 

where W(x,) is a given continuously differentiable function and k is a given parameter. 
We know [2,5] that the control 

U”(X) = - k2 au+, )/ax, (3.13) 

provides an absolute minimum for the functional (3.12) under differential constraints (3.11) and the given 
initial state (3.5). The optimal motion of the system is given by the solution of the Cauchy problem (3.11), 
(3.5) with u = U”(X). We will show that the function W(x,) can be chosen so that this solution satisfies the 
final ~ndition (3.6). 

Suppose 

W (x, ) = ax: + bx, (3.14) 

where a and b are parameters to be determined. 
The solution of the Cauchy problem (3.11), (3.5), (3.13), (3.14) for u = U”(X) has the form 

x,(t) =x, o - br/(2a) +a, (1 - exp (-2k*at)) 

x1(t) = -b/(a) + 2k’aa, exp (-2kzat); a, = (2ax, n + b)1(4kaa2) 

(3.15) 

We require that conditions (3.6) be satisfied. Then we obtain from (3.15) and (3.6) relations linking the 

parameters a and b 

x, o + a, (1 - exp(-2k'nr)) - bT/(2a) =x1 T 

2k’aa,exp(-2k’oT) =x2 T+b/ (20) 

(3.16) 

For simplicity, we consider the case 

q. =o, X,T#O (3.17) 

Then the expressions 

b = bx, r/(F(a> - 1)) exp (- 2k’aT) = F(a) 

F(a) = 1&2k’x, TT/(x, T/a + 2ka(x1 T - x, ,)) (3.18) 

follow from (3.16) and (3.17). 
Analysis of the behaviour of the functions F(a) and exp(-2k2aT) in the domain a > 0 shows that the 

second equation in (3.18) has a positive root a = dc > 0 as long as the condition 

(3.19) 

is satisfied. 
After determining a* the parameter b is calculated from the first formula in (3.18). Thus a control in 

the form of the synthesis 

u’(x)s -k’(2ux, +b) 



Synthesizing suboptimal controls in non-linear dynamical systems 3s 

where the parameters II and & are given by formulae (3.18). takes the dynamical system (3.11) under 
~sumptions (3.17) and (3.19) from the initial state (3.5) to the final state (3.6) and provides an absolute 

minimum to the functional 

IT u’ 
JIUI =“:(T)+&(T)+ 7 d [(; ) +#v(&zx, +b)‘]& 

Note that by formulae (2.5) and assumption (3.17) we have JIuO] = 0. 
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